Multigrid preconditioners for linear systems arising in PDE constrained optimization

Andrei Draganescu

Department of Mathematics and Statistics University of Maryland, Baltimore County

March 5, 2013

Acknowledgments

- Former collaborators:
 Todd Dupont (U Chicago), Volkan Akçelik (Exxon),
 George Biros (U Texas), Omar Ghattas (U Texas),
 Judith Hill (ORNL), Cosmin Petra (ANL), Bart van Bloemen
 Waanders (Sandia).
- Current collaborators: (UMBC)
 Mona Hajghassem, Jyoti Saraswat, Ana Maria Soane
- Grants:
 - NSF awards DMS-1016177 and DMS-0821311.
 - DOE contract no: DE-SC0005455.

Outline

- Model problems
- Unconstrained problems with linear PDE constraints
- Nonlinear constraints, control constraints
 - A semilinear elliptic constrained problem
 - Control-constrained problems
 - Optimal control problems constrained by the Stokes equations

Abstract problem formulation

$$\begin{cases} \text{ minimize} \quad J(y,u) = \frac{1}{2}||y - y_d||_{L^2(\Omega)}^2 + R(u,y), \\ \text{subj. to} \quad u \in U_{ad} \subset U, \quad y \in Y_{ad} \subset Y, \\ e(y,u) = 0. \end{cases}$$
 (1)

- U_{ad} and Y_{ad} sets of admissible controls resp. states (convex, closed, non-empty).
- Ex.: $U_{ad} = \{u \in U : \underline{u} \le u \le \overline{u}\}, Y_{ad} = \{y \in Y : y \le y \le \overline{y}\}.$
- Equality constraint is a well-posed PDE: for all $u \in U$ there is a unique $y \in Y$ (depending continuously on u), so that

$$e(y,u)=0, \ y\stackrel{\mathrm{def}}{=} K(u)$$
.

Reduced problem formulation

If $U_{ad} = U$ and $Y_{ad} = Y$, problem can be reformulated as unconstrained:

Summary

$$\min_{u \in U} J(u) = \frac{1}{2} \|K(u) - y_d\|^2 + \frac{\beta}{2} \|Lu\|^2, \quad u \in U_{ad}.$$
 (2)

• If $\beta \ll 1$, essentially we want solve

$$K(u) = y_d$$
.

- However, problems of interest are ill-posed, need regularization:
 - $L = I \Rightarrow$ find u of smallest norm;
 - $L = \nabla \Rightarrow$ find *u* of smallest variation.

Motivating applications

- Reverse advection-diffusion problems (source inversion):
 - T > 0 fixed "end-time", y_d end-time state, u initial state
 - $z(\cdot, t)$ transported quantity subjected to:

$$\begin{cases} \partial_t z - \nabla \cdot (a\nabla z + bz) + cz = 0 & \text{on } \Omega \\ z(x, t) = 0 & \text{for } x \in \partial\Omega, \ t \in [0, T] \\ z(x, 0) = u(x) & \text{for } x \in \Omega \end{cases}$$

• K = S(T): initial - to - final

$$K u = S(T)u \stackrel{\text{def}}{=} z(\cdot, T)$$

Further motivating applications

- 2. Elliptic optimal control problem:
 - PDE-constrained optimal control problem

$$\left\{ \begin{array}{ll} \text{minimize} & \frac{1}{2}\|y-y_d\|^2+\frac{\beta}{2}\|u\|^2 \;, \\ \text{subj to:} & -\Delta y=u \;, \;\; u|_{\partial\Omega}=0 \;, \\ & \underline{u}\leq u\leq \overline{u} \;. \end{array} \right.$$

• If unconstrained, then $K = (-\Delta)^{-1}$.

The case of linear constraints

Assume K linear, $U_{ad} = U$:

$$\min_{u} J(u) = \frac{1}{2} \|Ku - y_d\|^2 + \frac{\beta}{2} \|u\|^2$$

Newton's method gives the solution explicitly in one step:

$$u^{\text{min}} = u_0^{\text{guess}} - G^{-1} \nabla J(u_0^{\text{guess}})$$
,

where

$$G = G(\beta) = I + \beta^{-1} K^* \cdot K ,$$

$$\nabla J(u) = u + \beta^{-1} K^* (Ku - y_d) .$$

Formulation is equivalent to the regularized normal equations

$$(\beta I + K^* \cdot K)u = K^* y_d.$$

Strategy: discretize-then-optimize

Natural FE discretization for the operator K:

$$\min_{u} J(u) = \frac{1}{2} \|K_{n}u - y_{d}\|^{2} + \frac{\beta}{2} \|u\|^{2}.$$

Solution of discrete problem:

$$u_h^{\text{min}} = u_{0,h}^{\text{guess}} - G_h^{-1} \nabla J_h(u_{0,h}^{\text{guess}}),$$

where

$$G_h = G_h(\beta) = I + \beta^{-1} K_h^* \cdot K_h ,$$

$$\nabla J_h(u) = u + \beta^{-1} K_h^* (K_h u - \pi_h y_d) ,$$

 π_h is the orthogonal projection onto the finite element space V_h

• Main problem: need to invert the operator G_h efficiently.

Main issues

- The matrix representing the linear operator G_h is dense, potentially large, and not available.
- Matrix-vector product cost is comparable to two forward computations (expensive, but feasible):

$$G_h \cdot u = u + \beta^{-1} K_h^* \cdot K_h u$$
.

 Gradient computation also costs as much as two forward computations (only done once):

$$\nabla J_h(u) = u + \beta^{-1} K_h^* (K_h u - \pi_h y_d) .$$

Need iterative methods.

Solution using conjugate gradient

- Eigenvalues of G_h cluster around 1 ⇒
 CG is a good choice for solving inverting G_h:
 the number of iterations
 - is independent of the resolution;
 - grows only logarithmically with $\beta \to 0$.
- A measure of success: speedup over CG.

Multigrid strategies

• major differences between G_h and an elliptic operator A_h :

G_h	A_h			
smoothing	roughening			
nonlocal	local			
$cond(G_h)$ bounded	$cond(A_h) o \infty$			
	as $h \rightarrow 0$			

- Related multigrid work:
 - Hackbusch (1981), King (1992), Rieder (1997), Hanke and Vogel (1999), Kaltenbacher (2003), Donatelli (2005), Biros and Dogan (2008), Draganescu and Dupont (2008), Borzi and Kunisch (2005).
 - Lewis and Nash (2000)
 - overview: Borzi and Schultz (SIAM review, 2009)
 - more recent: Wathen, Stoll, Rees, Dollar, Draganescu and Soane, etc

"smooth" functions "rough" functions

• denote $\pi = \pi_{2h}$, $\rho = I - \pi_{2h}$

$$G_h = \underbrace{\pi G_h \pi}_{M_1} + \underbrace{\rho G_h \pi}_{M_2} + \underbrace{\pi G_h \rho}_{M_3} + \underbrace{\rho G_h \rho}_{M_4}$$

• since $G_h \rho = (I + \beta^{-1} K_h^* K_h) \rho \approx \rho$

$$M_2pprox 0 \ M_1pprox oldsymbol{G}_{2h}\pi$$

$$M_3 \approx 0$$
 $M_4 \approx \rho$

$$G_h \approx M_h \stackrel{\text{def}}{=} G_{2h}\pi_{2h} \oplus (I - \pi_{2h})$$

"smooth" functions "rough" functions

•
$$V_h = V_{2h} \oplus$$

$$\ni \widehat{W}$$

• denote $\pi = \pi_{2h}$, $\rho = I - \pi_{2h}$

$$G_{h} = \underbrace{\pi G_{h} \pi}_{M_{1}} + \underbrace{\rho G_{h} \pi}_{M_{2}} + \underbrace{\pi G_{h} \rho}_{M_{3}} + \underbrace{\rho G_{h} \rho}_{M_{4}}$$

• since
$$G_h \rho = (I + \beta^{-1} K_h^* K_h) \rho \approx \rho$$

$$M_2 \approx 0$$
 $M_1 \approx G_{2h}\pi$

$$M_3 \approx 0$$
 $M_4 \approx \rho$

$$G_h \approx M_h \stackrel{\text{def}}{=} G_{2h}\pi_{2h} \oplus (I - \pi_{2h})$$

"smooth" functions "rough" functions

$$\widehat{W}$$

• denote $\pi = \pi_{2h}$, $\rho = I - \pi_{2h}$

$$G_{h} = \underbrace{\pi G_{h} \pi}_{M_{1}} + \underbrace{\rho G_{h} \pi}_{M_{2}} + \underbrace{\pi G_{h} \rho}_{M_{3}} + \underbrace{\rho G_{h} \rho}_{M_{4}}$$

• since $G_h \rho = (I + \beta^{-1} K_h^* K_h) \rho \approx \rho$

$$M_2 \approx 0$$

$$M_3 \approx 0$$

$$M_1 \approx \mathbf{G}_{2h}\pi$$

$$M_4 \approx \rho$$

$$G_h \approx M_h \stackrel{\text{def}}{=} G_{2h}\pi_{2h} \oplus (I - \pi_{2h})$$
.

"smooth" functions "rough" functions

•
$$V_h = V_{2h} \oplus$$

$$\widehat{W}$$

• denote $\pi = \pi_{2h}, \, \rho = I - \pi_{2h}$

$$G_{h} = \underbrace{\pi G_{h} \pi}_{M_{1}} + \underbrace{\rho G_{h} \pi}_{M_{2}} + \underbrace{\pi G_{h} \rho}_{M_{3}} + \underbrace{\rho G_{h} \rho}_{M_{4}}$$

• since
$$G_h \rho = (I + \beta^{-1} K_h^* K_h) \rho \approx \rho$$

$$M_2 \approx 0$$
 $M_1 \approx G_{2h}\pi$

$$M_3 \approx 0$$
 $M_4 \approx \rho$

$$G_h \approx M_h \stackrel{\text{def}}{=} G_{2h}\pi_{2h} \oplus (I - \pi_{2h})$$

"smooth" functions "rough" functions $V_h = V_{2h} \oplus W$

• denote $\pi = \pi_{2h}$, $\rho = I - \pi_{2h}$

$$G_{h} = \underbrace{\pi G_{h} \pi}_{M_{1}} + \underbrace{\rho G_{h} \pi}_{M_{2}} + \underbrace{\pi G_{h} \rho}_{M_{3}} + \underbrace{\rho G_{h} \rho}_{M_{4}}$$

• since $G_h \rho = \left(I + \beta^{-1} K_h^* K_h\right) \rho \approx \rho$ $M_2 \approx 0 \qquad M_3 \approx 0$ $M_1 \approx G_{2h} \pi \qquad M_4 \approx \rho$

$$G_h \approx M_h \stackrel{\text{def}}{=} G_{2h}\pi_{2h} \oplus (I - \pi_{2h})$$
.

Multigrid for our problem two-grid approximation (results)

wo-grid approximation (results)

Proposed preconditioner:

$$L_h \stackrel{\text{def}}{=} (M_h)^{-1} = G_{2h}^{-1} \pi_{2h} + (I - \pi_{2h}).$$

Theorem (A.D., Dupont 2004):

For h sufficiently small and $u \in V_h$

$$1 - C \frac{h^{p}}{\beta} \leq \frac{\langle (M_{h})^{-1}u, u \rangle}{\langle (G_{h})^{-1}u, u \rangle} \leq 1 + C \frac{h^{p}}{\beta} ,$$

where p is the order of the discrete method.

From two-grid to multigrid natural extension (V-cycle)

Natural extension to multigrid is suboptimal:

$$L_{h} = G_{2h}^{-1} \pi_{2h} + (I - \pi_{2h}) \approx G_{h}^{-1}$$

$$\Downarrow \text{ (since } L_{2h} \approx G_{2h}^{-1} \text{)}$$

$$L_{h} \stackrel{\text{def}}{=} L_{2h} \pi_{2h} + (I - \pi_{2h})$$

Corollary

For h, h_0 small enough and $u \in V_h$

$$1 - C \frac{h_0^p}{\beta} \le \frac{\langle L_h u, u \rangle}{\langle (G_h)^{-1} u, u \rangle} \le 1 + C \frac{h_0^p}{\beta}$$

From two-grid to multigrid natural extension (V-cycle)

Natural extension to multigrid is suboptimal:

$$L_{h} = G_{2h}^{-1}\pi_{2h} + (I - \pi_{2h}) \approx G_{h}^{-1}$$

$$\Downarrow \text{ (since } L_{2h} \approx G_{2h}^{-1}\text{)}$$

$$L_{h} \stackrel{\text{def}}{=} L_{2h}\pi_{2h} + (I - \pi_{2h})$$

Corollary

For h, h_0 small enough and $u \in V_h$

$$1 - C \frac{h_0^p}{\beta} \le \frac{\langle L_h u, u \rangle}{\langle (G_h)^{-1} u, u \rangle} \le 1 + C \frac{h_0^p}{\beta}$$

From two-grid to multigrid natural extension (V-cycle)

Natural extension to multigrid is suboptimal:

$$L_{h} = G_{2h}^{-1} \pi_{2h} + (I - \pi_{2h}) \approx G_{h}^{-1}$$

$$\Downarrow \text{ (since } L_{2h} \approx G_{2h}^{-1}\text{)}$$

$$L_{h} \stackrel{\text{def}}{=} L_{2h} \pi_{2h} + (I - \pi_{2h})$$

Corollary:

For h, h_0 small enough and $u \in V_h$

$$1 - C\frac{h_0^\rho}{\beta} \leq \frac{\langle L_h u, u \rangle}{\left\langle (G_h)^{-1} u, u \right\rangle} \leq 1 + C\frac{h_0^\rho}{\beta} \;.$$

From two-grid to multigrid Newton extension (W-cycle)

 essential ingredient: use Newton's method for the nonlinear operator equation

$$X^{-1}-G_h=0$$

• basic idea: X_1 (below) is an improved approximation of $(G_h)^{-1}$ over X_0

$$X_1 = \mathcal{N}_{G_h}(X_0) \stackrel{\text{def}}{=} 2X_0 - X_0 \cdot G_h \cdot X_0$$

$$L_h \stackrel{\text{def}}{=} \mathcal{N}_{G_h}(L_{2h}\pi_{2h} + (I - \pi_{2h}))$$

From two-grid to multigrid Newton extension (W-cycle)

 essential ingredient: use Newton's method for the nonlinear operator equation

$$X^{-1} - G_h = 0$$

• basic idea: X_1 (below) is an improved approximation of $(G_h)^{-1}$ over X_0

$$X_1 = \mathcal{N}_{G_h}(X_0) \stackrel{\text{def}}{=} 2X_0 - X_0 \cdot G_h \cdot X_0$$

$$L_h \stackrel{\text{def}}{=} \mathcal{N}_{G_h}(L_{2h}\pi_{2h} + (I - \pi_{2h}))$$

From two-grid to multigrid Newton extension (W-cycle)

 essential ingredient: use Newton's method for the nonlinear operator equation

$$X^{-1} - G_h = 0$$

• basic idea: X_1 (below) is an improved approximation of $(G_h)^{-1}$ over X_0

$$X_1 = \mathcal{N}_{G_h}(X_0) \stackrel{\text{def}}{=} 2X_0 - X_0 \cdot G_h \cdot X_0$$

$$L_h \stackrel{\text{def}}{=} \mathcal{N}_{G_h}(L_{2h}\pi_{2h} + (I - \pi_{2h}))$$

From two-grid to multigrid Newton extension (result)

Theorem (A.D., Dupont 2004):

For h, h_0 sufficiently small and $u \in V_h$

$$1 - C\frac{h^{\rho}}{\beta} \leq \frac{\langle L_{\underline{h}}u, u \rangle}{\langle (G_{\underline{h}})^{-1}u, u \rangle} \leq 1 + C\frac{h^{\rho}}{\beta} \; .$$

Numerical results

First test case: one dimensional advection-diffusion equation

Forward problem:

$$\partial_t z - \partial_x (a\partial_x z + bz) + cz = 0$$
, on $(0,1)$, $z(\cdot,0) = u$.

- We will test multigrid with up to 6 levels vs. conjugate gradient.
- Measures of success:
 - measure 1: cost(inverse problem) / cost(forward problem)
 - measure 2: cost(inverse problem) / cost(CG solve)

Numerical results

First test case: one dimensional advection-diffusion equation

Numerical results

First test case: one dimensional advection-diffusion equation

Table: Iteration count (I/F) for the W-cycle; $\beta = 10^{-3}$.

	N		1		2		3		4		5		6
	200	15	(32.3)	11	(61.1)	9	(29.6)	7	(19.4)	6	(16.2)	5	(13.7)
	400	16	(34.1)	9	(48)	7	(22.8)	6	(16.8)	5	(13.8)		
	800	16	(34)	7	(38)	6	(19.8)	5	(14.4)				
1	1600	16	(34)	6	(32)	5	(16.9)						
3	3200	17	(36)	5	(26.7)								

Outline

- Model problems
- Unconstrained problems with linear PDE constraints
- Nonlinear constraints, control constraints
 - A semilinear elliptic constrained problem
 - Control-constrained problems
 - Optimal control problems constrained by the Stokes equations

Semilinear elliptic constraints (with Jyoti Saraswat)

Optimal control problem:

minimize
$$\frac{1}{2} \|y - y_d\|^2 + \frac{\beta}{2} \|u\|^2$$
,
subj to: $Ay + c_0 y + f(y) = u$, $u \in L^2(\Omega)$.

Assumptions and basic facts

- A is a uniformly elliptic operator on $\Omega \subset \mathbb{R}^d$ (d = 2, 3) with sufficiently smooth coefficients, $c_0 \ge 0$ is in L^{∞} .
- $f: \mathbb{R} \to \mathbb{R}$ is increasing, sufficiently smooth (C^3 will do).
- Monotone operator theory guarantees unique solution $u \rightarrow y(u) \in H_0^1$.
- Stampacchia technique produces L^{∞} -estimates for y(u) independent of c_0 , $f: ||y(u)||_{L^{\infty}} \leq C_{\infty} ||u||_{L^2}$.
- Full elliptic regularity is assumed: $y(u) \in H^2$.
- Mesh to allow for discrete FE maximum principle.

Reduced form of control problem

Unconstrained optimal control problem:

minimize
$$\frac{1}{2} \|y(u) - y_d\|^2 + \frac{\beta}{2} \|u\|^2$$
 (4)

- Existence of optimal control $\bar{u} \in L^2(\Omega)$ guaranteed by standard techniques: optimal state $\bar{y} = y(\bar{u}) \in H^2(\Omega) \cap H^1_0(\Omega)$.
- Uniqueness of the optimal control \bar{u} is not guaranteed in general.
- The optimal control problem may not be convex.

Solving the control problem

- The state is twice differentiable with respect to the control so the cost functional is twice differentiable.
- Apply Newton's method to solve the control problem:

$$u_{n+1} = u_n - \text{Hessian}^{-1} \text{gradient}$$
.

- Grid-sequencing used to obtain good initial guess.
- Adjoint methods used to obtain gradients and the Hessian-vector multiplication.

Gradient and Hessian using adjoints

- L = L(u) = A + f'(u) is the linearization of the semilinear operator at y.
- Gradient: $\nabla_u J(u) = (L^*)^{-1} (y(u) y_d) + \beta u$.
- Hessian-vector multiplication:

$$G(u)v = L^{*-1}(1 - f''(u)q(u))L^{-1}v + \beta v$$
,

where

$$q = q(u) = (L^*)^{-1}(y(u) - y_d)$$
.

 Cost of Hessian-vector multiplication is equivalent to two linear elliptic solves.

Mesh independence of Newton's method

Table: Newton iterations

Resolution	50	100	200	250	300	350
Newton's iterations	4	4	4	4	4	4

Hessian and preconditioner

The Hessian:

$$G(u) = L^{*-1}(1 - f''(u)q(u))L^{-1} + \beta I$$

- As before, the Hessian is smoothing.
- Proposed two grid preconditioner:

$$M_h = \beta \rho + G_{2h}(\pi u)\pi$$

Two-grid preconditioner

Theorem (J. Saraswat, A.D., 2012)

On a quasi-uniform mesh and under usual elliptic regularity assumptions

$$\|(G_h(u)-M_h(u))v\| \leq Ch^2\|v\|, \ \forall v \in L^2(\Omega),$$

C independent of h.

Remark:

Optimal order in h

One dimensional, in-vitro experiments

Table: Joint spectrum analysis in 1D: $f(y) = \alpha y^3$

Ν	$z_k = \max(\operatorname{abs}(\ln d))$	$ratio = \frac{z_k}{z_{k+1}}$
10	2.426486	N/A
20	0.569206	4.262924
40	0.134355	4.236559
80	0.034536	3.890306
160	0.008709	3.965544
320	0.002182	3.990972
640	0.000545	3.997717

Here $d = eig(G_h, T_h)$.

The spectral distance between constructed preconditioner and Hessian is $O(h^2)$, which is the optimal rate.

Two-dimensional, in-vivo experiments with $f(y) = \alpha y^3$

Table:
$$\alpha = 1, \beta = 10^{-4}$$

iterate N	16	32	64	128
1	7 (12)	6 (12)	4 (12)	4 (12)
2	7 (11)	5 (11)	4 (11)	4 (11)
3	4 (5)	3 (5)	2 (6)	1 (6)

Table:
$$\alpha = 1, \beta = 10^{-5}$$

iterate N	16	32	64	128
1	11 (21)	8 (21)	5 (21)	4 (21)
2	10 (20)	8 (20)	5 (20)	4 (20)
3	5 (9)	4 (9)	2 (9)	2 (9)

Two-dimensional, in-vivo experiments

Table:
$$\alpha = 10, \beta = 10^{-5}$$

iterate N	16	32	64	128
1	11 (21)	8 (21)	5 (21)	4 (21)
2	11 (20)	8 (20)	5 (20)	4 (20)
3	10 (16)	5 (16)	5 (16)	4 (16)
4	4 (8)	2 (8)	2 (8)	1 (8)

Table:
$$\alpha = 10, \beta = 10^{-7}$$

iterate N	16	32	64	128
1	40 (76)	21 (93)	9 (99)	5 (98)
2	39 (65)	16 (72)	6 (71)	5 (71)
3	33 (50)	13 (48)	6 (49)	5 (46)
4	13 (12)	2 (12)	2 (12)	2 (12)

Outline

- Model problems
- Unconstrained problems with linear PDE constraints
- 3 Nonlinear constraints, control constraints
 - A semilinear elliptic constrained problem
 - Control-constrained problems
 - Optimal control problems constrained by the Stokes equations

Problem formulation

Model problem:

$$K: L^2(\Omega) \to L^2(\Omega)$$
 compact, linear, $f \in L^2(\Omega)$

Optimal control problem

minimize
$$\frac{1}{2} \|Ku - y_d\|^2 + \frac{\beta}{2} \|u\|^2$$

subj to: $u \in L^2(\Omega), \ a \le u \le b$ (5)

Why bound-constraints?

- Physically meaningful, other qualitative considerations
- Example: solution is localized if the "true" solution is so

Discrete problem formulation

- Norms: discrete norm $||u||_h^2 = \sum w_i u^2(P_i)$
- Inequality constraints: a ≤ u ≤ b, enforced at nodes (strong enforcement)

Discrete optimal control problem

minimize
$$\frac{1}{2} \|K_h u - y_{d,h}\|_h^2 + \frac{\beta}{2} \|u\|_h^2$$
 subj to: $u \in V_h$, $a_h(P) \le u(P) \le b_h(P)$, \forall node P (6)

Discrete problem formulation

- Norms: discrete norm $||u||_h^2 = \sum w_i u^2(P_i)$
- Inequality constraints: a ≤ u ≤ b, enforced at nodes (strong enforcement)

Discrete optimal control problem

minimize
$$\frac{1}{2} \| K_h u - y_{d,h} \|_h^2 + \frac{\beta}{2} \| u \|_h^2$$
subj to: $u \in V_h$, $a_h(P) \le u(P) \le b_h(P)$, \forall node P (6)

Discrete problem formulation

- Norms: discrete norm $||u||_h^2 = \sum w_i u^2(P_i)$
- Inequality constraints: a ≤ u ≤ b, enforced at nodes (strong enforcement)

Discrete optimal control problem

minimize
$$\frac{1}{2} \|K_h u - y_{d,h}\|_h^2 + \frac{\beta}{2} \|u\|_h^2$$
 subj to: $u \in V_h$, $a_h(P) \le u(P) \le b_h(P)$, \forall node P (6)

Optimization methods

- Optimization algorithms (outer iteration):
 - Semi-smooth Newton methods (active-set type strategies)
 - Interior point methods (IPM)
- Require: solving few linear systems at each outer iteration
 - semi-smooth Newton: subsystem (principal minor)
 - IPM: modified, same-size system
- Goals:
 - small # of outer iterations (prefer mesh-independence)
 - here: fast solvers for the linear systems:
 # of linear iterations to decrease with increasing resolution

Optimization methods

- Optimization algorithms (outer iteration):
 - Semi-smooth Newton methods (active-set type strategies)
 - Interior point methods (IPM)
- Require: solving few linear systems at each outer iteration
 - semi-smooth Newton: subsystem (principal minor)
 - IPM: modified, same-size system
- Goals:
 - small # of outer iterations (prefer mesh-independence)
 - here: fast solvers for the linear systems:
 # of linear iterations to decrease with increasing resolution

Optimization methods

- Optimization algorithms (outer iteration):
 - Semi-smooth Newton methods (active-set type strategies)
 - Interior point methods (IPM)
- Require: solving few linear systems at each outer iteration
 - semi-smooth Newton: subsystem (principal minor)
 - IPM: modified, same-size system
- Goals:
 - small # of outer iterations (prefer mesh-independence)
 - here: fast solvers for the linear systems:
 # of linear iterations to decrease with increasing resolution

A. Primal-dual interior point methods (with Cosmin Petra)

For fixed resolution V_h and uniform grids:

• solve perturbed KKT system for $\mu \downarrow 0$:

$$\begin{array}{rcl} (\beta \mathbf{I} + \mathbf{K}^T \mathbf{K}) \mathbf{u} - \mathbf{v} & = & -\mathbf{K}^T \mathbf{y}_d \\ \mathbf{u} \cdot \mathbf{v} & = & \mu \mathbf{e} \\ \mathbf{u}, \mathbf{v} & > & \mathbf{0} \end{array}$$

Mehrotra's predictor-corrector IPM

$$(\beta \mathbf{I} + \mathbf{K}^T \mathbf{K}) \Delta \mathbf{u} - \Delta \mathbf{v} = r_c$$
$$\mathbf{V} \Delta \mathbf{u} + \mathbf{U} \Delta \mathbf{v} = r_a$$

reduced system

$$(\beta \mathbf{I} + \mathbf{U}^{-1}\mathbf{V} + \mathbf{K}^{T}\mathbf{K})\Delta \mathbf{u} = \mathbf{r}_{c} - \mathbf{U}^{-1}\mathbf{r}_{a}$$

with U, V diagonal, positive

A. Primal-dual interior point methods (with Cosmin Petra)

For fixed resolution V_h and uniform grids:

• solve perturbed KKT system for $\mu \downarrow 0$:

$$\begin{array}{rcl} (\beta \mathbf{I} + \mathbf{K}^T \mathbf{K}) \mathbf{u} - \mathbf{v} & = & -\mathbf{K}^T \mathbf{y}_d \\ \mathbf{u} \cdot \mathbf{v} & = & \mu \mathbf{e} \\ \mathbf{u}, \mathbf{v} & > & \mathbf{0} \end{array}$$

Mehrotra's predictor-corrector IPM

$$(\beta \mathbf{I} + \mathbf{K}^{\mathsf{T}} \mathbf{K}) \Delta \mathbf{u} - \Delta \mathbf{v} = r_{c}$$
$$\mathbf{V} \Delta \mathbf{u} + \mathbf{U} \Delta \mathbf{v} = r_{a}$$

reduced system

$$(\beta \mathbf{I} + \mathbf{U}^{-1}\mathbf{V} + \mathbf{K}^{T}\mathbf{K})\Delta \mathbf{u} = \mathbf{r}_{c} - \mathbf{U}^{-1}\mathbf{r}_{a}$$

with U, V diagonal, positive

A. Primal-dual interior point methods (with Cosmin Petra)

For fixed resolution V_h and uniform grids:

• solve perturbed KKT system for $\mu \downarrow 0$:

$$\begin{array}{rcl} (\beta \mathbf{I} + \mathbf{K}^T \mathbf{K}) \mathbf{u} - \mathbf{v} & = & -\mathbf{K}^T \mathbf{y}_d \\ \mathbf{u} \cdot \mathbf{v} & = & \mu \mathbf{e} \\ \mathbf{u}, \mathbf{v} & > & \mathbf{0} \end{array}$$

Mehrotra's predictor-corrector IPM

$$(\beta \mathbf{I} + \mathbf{K}^{\mathsf{T}} \mathbf{K}) \Delta \mathbf{u} - \Delta \mathbf{v} = r_{c}$$
$$\mathbf{V} \Delta \mathbf{u} + \mathbf{U} \Delta \mathbf{v} = r_{a}$$

reduced system

$$(\beta \mathbf{I} + \mathbf{U}^{-1}\mathbf{V} + \mathbf{K}^{T}\mathbf{K})\Delta \mathbf{u} = \mathbf{r}_{c} - \mathbf{U}^{-1}\mathbf{r}_{a}$$

with **U**, **V** diagonal, positive

- the matrix: $(\beta \mathbf{I} + \mathbf{U}^{-1}\mathbf{V} + \mathbf{K}^T\mathbf{K})$
- U⁻¹V represents a relatively smooth function
- need to invert

$$(D_{\beta+\lambda} + \underbrace{\mathbf{K}^T\mathbf{K}}_{K^*K})$$

with
$$D_{\beta+\lambda} = \beta I + \mathbf{U}^{-1} V$$

... and further

$$D_{\sqrt{\beta+\lambda}}(I + \underbrace{A\mathbf{K}^{\mathsf{T}}\mathbf{K}A}_{(KA)^{*}(KA)})D_{\sqrt{\beta+\lambda}}$$

with
$$A = D_{\sqrt{1/(\beta+\lambda)}}$$

- the matrix: $(\beta \mathbf{I} + \mathbf{U}^{-1}\mathbf{V} + \mathbf{K}^T\mathbf{K})$
- U⁻¹V represents a relatively smooth function
- need to invert

$$(D_{\beta+\lambda}+\underbrace{\mathbf{K}^T\mathbf{K}}_{K^*K})$$

with
$$D_{\beta+\lambda} = \beta I + \mathbf{U}^{-1} V$$

... and further

$$D_{\sqrt{\beta+\lambda}}(I + \underbrace{A\mathbf{K}^T\mathbf{K}A}_{(KA)^*(KA)})D_{\sqrt{\beta+\lambda}}$$

with
$$A = D_{\sqrt{1/(\beta+\lambda)}}$$

- the matrix: $(\beta \mathbf{I} + \mathbf{U}^{-1}\mathbf{V} + \mathbf{K}^T\mathbf{K})$
- U⁻¹V represents a relatively smooth function
- need to invert

$$(D_{\beta+\lambda} + \underbrace{\mathbf{K}^{\mathsf{T}}\mathbf{K}}_{K^*K})$$

with
$$D_{\beta+\lambda} = \beta I + \mathbf{U}^{-1} V$$

... and further

$$D_{\sqrt{\beta+\lambda}}(I + \underbrace{A\mathbf{K}^T\mathbf{K}A}_{(KA)^*(KA)})D_{\sqrt{\beta+\lambda}}$$

with
$$A = D_{\sqrt{1/(\beta+\lambda)}}$$

Need good preconditioner for

$$G_h=I+(K_hA_h)^*(K_hA_h)=I+(L_h)^*(L_h)$$
 with $A_h=D_{\sqrt{1/(\beta+\lambda_h)}}$

• Assume $\lambda_h = \text{interpolate}(\lambda)$

$$L_{h} \stackrel{\text{def}}{=} K_{h}A_{h}$$

$$L \stackrel{\text{def}}{=} KD_{\sqrt{1/(\beta+\lambda)}}$$

Key facts

- $G_h = I + L_h^* L_h$ is **dense**, available only matrix-free
- $\operatorname{cond}(I + L_h^* L_h) = O(\beta^{-1})$, mesh-independent, large
- $A_h = D_{\sqrt{1/(\beta + \lambda_h)}}$ neutral with respect to smoothing
- $L_{(h)} = K_{(h)}A_{(h)}$ same smoothing properties as $K_{(h)}$

Two-grid preconditioner

Theorem (A.D. and Petra, 2009)

On a uniform grid

$$\rho(I - M_h^{-1}G_h) \le Ch^2 \|(\beta + \lambda)^{-\frac{1}{2}}\|_{W^2_{\infty}}$$

Remarks:

- optimal order in h
- quality expected to decay as $\mu \downarrow 0$ since λ only L^2 in general
- for fixed β # linear iterations/outer iteration expected to decrease with $h \downarrow 0$
- M_h is slightly non-symmetric

Backwards advection-diffusion problem example

Optimal control problem

minimize
$$\frac{1}{2} ||S(T)u - y_d||^2 + \frac{\beta}{2} ||u||^2$$
 subj to:
$$u \in L^2(\Omega), \quad 0 \le u \le 1$$
 (7)

• $z(\cdot, t)$ transported quantity subjected to:

$$\begin{cases} \partial_t z - \nabla \cdot (a\nabla z + bz) + cz = 0 & \text{on } \Omega \\ z(x, t) = 0 & \text{for } x \in \partial\Omega, \ t \in [0, T] \\ z(x, 0) = u(x) & \text{for } x \in \Omega \end{cases}$$

• K = S(T): initial - to - final

$$K u = S(T)u \stackrel{\text{def}}{=} z(\cdot, T)$$

Solution

Iteration count / predictor-step linear systems

Evolution of quantities of interest

• Evolution of $\|\lambda^{-\frac{1}{2}}\|_{W_{\infty}^2}$, μ , and last λ_h :

Another measure of success

Total number of finest-level mat-vecs (application of K)

$h \setminus levels$	1	2	3
1/1024	728	581	661
1/2048	740	463	489
1/4096	764	403	425
1/8192	768	377	403

Elliptic-constrained problem

minimize
$$\frac{1}{2}\|y - f\|^2 + \frac{\beta}{2}\|u\|^2$$
 subj to:
$$-\Delta y = u, \quad -1 \le u \le 1$$

$$\Delta f = \frac{3}{2}\sin(2\pi x)\sin(2\pi y), \ \beta = 10^{-6}$$

Iteration count / predictor-step linear systems

Mat-vecs count

Total number of finest-level mat-vecs (Poisson solves)

h \ levels	1	2	3	4
1/256	354	282	572	_
1/512	355	220	250	452
1/1024	355	198	210	224
1/2048	363	172	174	174

B. Semismooth Newton methods

KKT system (unperturbed):

$$(\beta \mathbf{I} + \mathbf{K}^{T}\mathbf{K})\mathbf{u} - \mathbf{v} = -\mathbf{K}^{T}\mathbf{y}_{d}$$

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$$

$$\mathbf{u}, \mathbf{v} \geq \mathbf{0}$$

Reformulate as a semismooth nonlinear system:

$$(\beta \mathbf{I} + \mathbf{K}^T \mathbf{K}) \mathbf{u} - \mathbf{v} = -\mathbf{K}^T \mathbf{y}_d$$

 $\mathbf{v} - \max(\mathbf{0}, \mathbf{v} - \beta \mathbf{u}) = \mathbf{0}$.

Active set strategy

Define the active index-set by

$$A = \{i \in \{1, ..., N\} : (\mathbf{v} - \beta \mathbf{u})_i > 0\}$$

and the inactive index-set by

$$\mathcal{I} = \{i \in \{1, \dots, N\} : (\mathbf{v} - \beta \mathbf{u})_i \le 0\} .$$

• The semismooth Newton method produces a sequence of active/inactive sets $(A_k, \mathcal{I}_k)_{k=1,2,...}$ that approximate (A, \mathcal{I}) .

Linear systems

 The critical system to be solved is at each semismooth Newton iterate has the form

$$\mathbf{G}^{\mathcal{I}}\mathbf{u}_{\mathcal{I}}\stackrel{\mathrm{def}}{=} (\beta\mathbf{I} + \mathbf{K}^{\mathsf{T}}\mathbf{K})^{\mathcal{I}\mathcal{I}}\mathbf{u}_{\mathcal{I}} = \mathbf{b}_{\mathcal{I}} \ .$$

where \mathcal{I} is the current guess at the inactive set.

 Similar preconditioning ideas can be applied: need a coarse space V_{2h}^I ⊂ V_h^I then preconditioner is

$$\mathbf{M_h} = \beta(\mathbf{I} - {\pi_{2h}}^{\mathcal{I}}) + \mathbf{G_h}^{\mathcal{I}} {\pi_{2h}}^{\mathcal{I}}$$

Coarse space

Analysis

Theorem (A.D., 2011)

$$\rho(I - M_h^{-1}G_h) \le C\beta^{-1} \left(h^2 + \sqrt{\mu_h^{\text{in}}}\right) , \qquad (8)$$

where μ_h^{in} is the Lebesgue measure of $\partial_n \Omega_h^{\text{in}}$

Preconditioner is expected to be of suboptimal quality:

$$\rho(I-M_h^{-1}G_h)\leq Ch^{\frac{1}{2}}.$$

Outline

- Model problems
- Unconstrained problems with linear PDE constraints
- 3 Nonlinear constraints, control constraints
 - A semilinear elliptic constrained problem
 - Control-constrained problems
 - Optimal control problems constrained by the Stokes equations

Stokes control (with Ana Maria Soane)

• Model optimal control problem:

minimize
$$\frac{\gamma_u}{2} \| \vec{u} - \vec{u}_d \|^2 + \frac{\gamma_p}{2} \| p - p_d \|^2 + \frac{\beta}{2} \| \vec{f} - \vec{f}_0 \|^2$$
 subj to: $-\nu \Delta \vec{u} + \nabla p = \vec{f}$, $\text{div } \vec{u} = 0 \;,\; \vec{u}|_{\Omega} = \vec{0}$

• Identify force \vec{f} closest to reference force \vec{f}_0 leading to given velocity and/or pressure "measurements" \vec{u}_d , p_d

The Hessian

The Hessian:

$$G_{h} = \beta I + \gamma_{u} U_{h}^{*} U_{h} + \gamma_{p} P_{h}^{*} P_{h}$$

• The proposed two-grid preconditioner:

$$M_h = \beta \rho + G_{2h}\pi$$

$$L_h = (M_h)^{-1} = \beta^{-1}\rho + (G_{2h})^{-1}\pi$$

Two-grid preconditioner: Analysis

Theorem (A.D., A. Soane 2011)

With a Taylor-Hood $\mathbf{Q}_2 - \mathbf{Q}_1$ discretization and under regularity assumptions allowing for

$$\|(U-U_h)(f)\| \le Ch^2\|f\|, \ \|(P-P_h)(f)\| \le Ch\|f\|$$

we have

$$d_{\sigma}(G_h, M_h) \leq \frac{C}{\beta} \left(\gamma_u h^2 + \gamma_p h \right) \; ,$$

C independent of h, β , provided the coarsest grid is sufficiently fine.

Numerical Experiments – Pressure control

Table: Pressure measured only ($\gamma_u = 0, \ \gamma_p = 1$)

N		16			32			64			128		2	56
no. levels	1	2	3	1	2	3	1	2	3	1	2	3	1	4
$\beta = 10^{-2}$	29	15	-	29	12	16	29	10	12	30	-	10	30	15
$\beta = 10^{-3}$	59	35	-	62	21	-	66	14	22	71	-	16	70	21

Time comparison at n=256, number of state variables (velocity and pressure): 588290, number of control variables: 261121

no. levels	1	4
$\beta = 10^{-2}$	3460 s	2156 s
$\beta = 10^{-3}$	8457 s	2866 s

Matlab on 2× Intel (Nehalem) Xeon E5540 Quad Core (8M Cache, 2.53 GHz) CPUs with 24Gig RAM

Numerical Experiments – Velocity control

Table: Velocity measured only ($\gamma_u = 1, \ \gamma_p = 0$)

N		32			64			128			256	
no. levels	1	2	3	1	2	3	1	2	3	1	2	4
$\beta = 10^{-4}$	11	3	3	11	3	3	-	-	-	-	-	-
$\beta = 10^{-5}$	20	4	4	20	3	3	21	-	3	22	-	2
$\beta = 10^{-6}$	42	6	8	44	4	4	45	-	3	45	-	3

Time comparison at n=256, number of state variables (velocity and pressure): 588290, number of control variables: 261121

no. levels	1	4
$\beta = 10^{-5}$	2622 s	393 s
$\beta = 10^{-6}$	5303 s	599 s

Conclusions

- Multigrid techniques open the possibility of solving an increasing class of large-scale PDE constrained optimal control problems at a reasonable cost.
- Main ingredients: a fast and reliable outer iteration (Newton, IPM, semismooth Newton), fast methods for the linear systems involved.
- Current techniques do not work as well for control-constrained problems (require special formulation, linear elements).

Future work and open problems

- Good preliminary results for steady-state Navier-Stokes controlled problems.
- Space-time PDEs and controls.
- Hyperbolic PDE constrained problems.
- Control-constrained problems: reconcile multigrid preconditioners for IPM and SSNM; handle higher order elements.
- State-constrained problems: will any of this work?

